Thermal analysis of ultrathin, compliant sensors for characterization of the human skin

نویسندگان

  • Zuguang Bian
  • Jizhou Song
  • R. Chad Webb
  • Andrew P. Bonifas
  • John A. Rogers
  • Yonggang Huang
چکیده

Recent work establishes that ultrathin, stretchable sensors can enable high precision thermal characterization of the skin, with capabilities for spatial mapping, in forms that avoid irritation, thermal or mechanical loads on natural behaviors, or motion artifacts. The results have potential for use in cardiovascular screening, skin hydration sensing, and local skin heating and thermal therapy. A theoretical framework for understanding the thermal behavior of these types of sensors is critically important for interpreting the data and identifying optimized designs. This paper presents an analytical model, validated by the finite element method and experiments, for this purpose. The sensor temperature is obtained analytically in terms of material and geometric parameters. A scaling law for the sensor response time shows that the normalized time depends only on the normalized sensor location and normalized thermal properties. A simple, analytic formula for the response at long times is also obtained. The results provide strategies for reducing the sensor response time and thereby for improving the device performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly ...

متن کامل

Ultrathin conformal devices for precise and continuous thermal characterization of human skin.

Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characte...

متن کامل

Green Synthesis of Zinc Oxide Nanoparticles using Garlic skin extract and Its Characterization

Plant-mediated synthesis of metal oxide nanoparticles is a promising alternative to the traditional method of physical and chemical synthesis. In this paper, we report the green synthesis of zinc oxide nanoparticles (ZnONPs) by a biological method. During the study, Zinc oxide nanoparticles were synthesized by Allium sativum skin (garlic skin) extract. Formation of zinc oxide nanoparticles has ...

متن کامل

MHD thermal radiation and chemical reaction effects with peristaltic transport of the eyring-powell fluid through a porous medium

In this paper, we analyze the thermal radiation and chemical reaction impacts on MHD peristaltic motion of the Eyring-Powell fluid through a porous medium in a channel with compliant walls under slip conditions for velocity, temperature, and concentration. Assumptions of a long wave length and low Reynolds number are considered. The modeled equations are computed by using the perturbation metho...

متن کامل

Thermal Transport Characteristics of Human Skin Measured In Vivo Using Ultrathin Conformal Arrays of Thermal Sensors and Actuators

Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013